Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

KP solitons and the Schottky uniformization (2507.20296v1)

Published 27 Jul 2025 in nlin.SI, math-ph, math.AG, math.CO, and math.MP

Abstract: Real and regular soliton solutions of the KP hierarchy have been classified in terms of the totally nonnegative (TNN) Grassmannians. These solitons are referred to as KP solitons, and they are expressed as singular (tropical) limits of shifted Riemann theta functions. In this talk, for each element of the TNN Grassmannian, we construct a Schottky group, which uniformizes the Riemann surface associated with a real finite-gap solution. Then we show that the KP solitons are obtained by degenerating these finite-gap solutions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.