Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Adaptive Proximal Causal Inference with Some Invalid Proxies (2507.19623v1)

Published 25 Jul 2025 in stat.ME

Abstract: Proximal causal inference (PCI) is a recently proposed framework to identify and estimate the causal effect of an exposure on an outcome in the presence of hidden confounders, using observed proxies. Specifically, PCI relies on two types of proxies: a treatment-inducing confounding proxy, related to the outcome only through its association with unmeasured confounders (given treatment and covariates), and an outcome-inducing confounding proxy, related to the treatment only through such association (given covariates). These proxies must satisfy stringent exclusion restrictions - namely, the treatment proxy must not affect the outcome, and the outcome proxy must not be affected by the treatment. To improve identification and potentially efficiency, multiple proxies are often used, raising concerns about bias from exclusion violations. To address this, we introduce necessary and sufficient conditions for identifying causal effects in the presence of many proxies, some potentially invalid. Under a canonical proximal linear structural equations model, we propose a LASSO-based median estimator that jointly selects valid proxies and estimates the causal effect, with theoretical guarantees. Recognizing LASSO's limitations in consistently selecting valid treatment proxies, we develop an adaptive LASSO-based estimator with differential penalization. We show that it is root-n consistent and yields valid confidence intervals when a valid outcome proxy is available. We also extend the approach to settings with many potentially invalid outcome proxies. Theoretical results are supported by simulations and an application assessing the effect of right heart catheterization on 30-day survival in ICU patient.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.