Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

ChartGen: Scaling Chart Understanding Via Code-Guided Synthetic Chart Generation (2507.19492v1)

Published 31 May 2025 in cs.HC, cs.AI, and cs.CV

Abstract: Chart-to-code reconstruction -- the task of recovering executable plotting scripts from chart images -- provides important insights into a model's ability to ground data visualizations in precise, machine-readable form. Yet many existing multimodal benchmarks largely focus primarily on answering questions about charts or summarizing them. To bridge this gap, we present ChartGen, a fully-automated pipeline for code-guided synthetic chart generation. Starting from seed chart images, ChartGen (i) prompts a vision-LLM (VLM) to reconstruct each image into a python script, and (ii) iteratively augments that script with a code-oriented LLM. Using ChartGen, we create 222.5K unique chart-image code pairs from 13K seed chart images, and present an open-source synthetic chart dataset covering 27 chart types, 11 plotting libraries, and multiple data modalities (image, code, text, CSV, DocTags). From this corpus, we curate a held-out chart-to-code evaluation subset of 4.3K chart image-code pairs, and evaluate six open-weight VLMs (3B - 26B parameters), highlighting substantial room for progress. We release the pipeline, prompts, and the dataset to help accelerate efforts towards robust chart understanding and vision-conditioned code generation: https://github.com/SD122025/ChartGen/

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: