Papers
Topics
Authors
Recent
2000 character limit reached

Unstable Prompts, Unreliable Segmentations: A Challenge for Longitudinal Lesion Analysis

Published 25 Jul 2025 in cs.CV | (2507.19230v1)

Abstract: Longitudinal lesion analysis is crucial for oncological care, yet automated tools often struggle with temporal consistency. While universal lesion segmentation models have advanced, they are typically designed for single time points. This paper investigates the performance of the ULS23 segmentation model in a longitudinal context. Using a public clinical dataset of baseline and follow-up CT scans, we evaluated the model's ability to segment and track lesions over time. We identified two critical, interconnected failure modes: a sharp degradation in segmentation quality in follow-up cases due to inter-scan registration errors, and a subsequent breakdown of the lesion correspondence process. To systematically probe this vulnerability, we conducted a controlled experiment where we artificially displaced the input volume relative to the true lesion center. Our results demonstrate that the model's performance is highly dependent on its assumption of a centered lesion; segmentation accuracy collapses when the lesion is sufficiently displaced. These findings reveal a fundamental limitation of applying single-timepoint models to longitudinal data. We conclude that robust oncological tracking requires a paradigm shift away from cascading single-purpose tools towards integrated, end-to-end models inherently designed for temporal analysis.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.