Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Obstruction theory for $A$-infinity bimodules (2507.17568v1)

Published 23 Jul 2025 in math.AT, math.KT, math.QA, and math.RT

Abstract: We develop an obstruction theory for the extension of truncated minimal $A$-infinity bimodule structures over truncated minimal $A$-infinity algebras. Obstructions live in far-away pages of a (truncated) fringed spectral sequence of Bousfield--Kan type. The second page of this spectral sequence is mostly given by a new cohomology theory associated to a pair consisting of a graded algebra and a graded bimodule over it. This new cohomology theory fits in a long exact sequence involving the Hochschild cohomology of the algebra and the self-extensions of the bimodule. We show that the second differential of this spectral sequence is given by the Gerstenhaber bracket with a bimodule analogue of the universal Massey product of a minimal $A$-infinity algebra. We also develop a closely-related obstruction theory for truncated minimal $A$-infinity bimodule structures over (the truncation of) a fixed minimal $A$-infinity algebra; the second page of the corresponding spectral sequence is now mostly given by the vector spaces of self-extensions of the underlying graded bimodule and the second differential is described analogously to the previous one. We also establish variants of the above for graded algebras and graded bimodules that are $d$-sparse, that is they are concentrated in degrees that are multiples of a fixed integer $d\geq1$. These obstruction theories are used to establish intrinsic formality and almost formality theorems for differential graded bimodules over differential graded algebras. Our results hold, more generally, in the context of graded operads with multiplication equipped with an associative operadic ideal, examples of which are the endomorphism operad of a graded algebra and the linear endomorphism operad of a pair consisting of a graded algebra and a graded bimodule over it.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube