Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Think Like an Engineer: A Neuro-Symbolic Collaboration Agent for Generative Software Requirements Elicitation and Self-Review (2507.14969v1)

Published 20 Jul 2025 in cs.SE

Abstract: The vision of End-User Software Engineering (EUSE) is to empower non-professional users with full control over the software development lifecycle. It aims to enable users to drive generative software development using only natural language requirements. However, since end-users often lack knowledge of software engineering, their requirement descriptions are frequently ambiguous, raising significant challenges to generative software development. Although existing approaches utilize structured languages like Gherkin to clarify user narratives, they still struggle to express the causal logic between preconditions and behavior actions. This paper introduces RequireCEG, a requirement elicitation and self-review agent that embeds causal-effect graphs (CEGs) in a neuro-symbolic collaboration architecture. RequireCEG first uses a feature tree to analyze user narratives hierarchically, clearly defining the scope of software components and their system behavior requirements. Next, it constructs the self-healing CEGs based on the elicited requirements, capturing the causal relationships between atomic preconditions and behavioral actions. Finally, the constructed CEGs are used to review and optimize Gherkin scenarios, ensuring consistency between the generated Gherkin requirements and the system behavior requirements elicited from user narratives. To evaluate our method, we created the RGPair benchmark dataset and conducted extensive experiments. It achieves an 87% coverage rate and raises diversity by 51.88%.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube