Transaction Profiling and Address Role Inference in Tokenized U.S. Treasuries (2507.14808v1)
Abstract: Tokenized U.S. Treasuries have emerged as a prominent subclass of real-world assets (RWAs), offering cryptographically enforced, yield-bearing instruments collateralized by sovereign debt and deployed across multiple blockchain networks. While the market has expanded rapidly, empirical analyses of transaction-level behaviour remain limited. This paper conducts a quantitative, function-level dissection of U.S. Treasury-backed RWA tokens including BUIDL, BENJI, and USDY, across multi-chain: mostly Ethereum and Layer-2s. We analyze decoded contract calls to isolate core functional primitives such as issuance, redemption, transfer, and bridge activity, revealing segmentation in behaviour between institutional actors and retail users. To model address-level economic roles, we introduce a curvature-aware representation learning framework using Poincar\'e embeddings and liquidity-based graph features. Our method outperforms baseline models on our RWA Treasury dataset in role inference and generalizes to downstream tasks such as anomaly detection and wallet classification in broader blockchain transaction networks. These findings provide a structured understanding of functional heterogeneity and participant roles in tokenized Treasury in a transaction-level perspective, contributing new empirical evidence to the study of on-chain financialization.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.