Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

NeHMO: Neural Hamilton-Jacobi Reachability Learning for Decentralized Safe Multi-Agent Motion Planning (2507.13940v1)

Published 18 Jul 2025 in cs.RO

Abstract: Safe Multi-Agent Motion Planning (MAMP) is a significant challenge in robotics. Despite substantial advancements, existing methods often face a dilemma. Decentralized algorithms typically rely on predicting the behavior of other agents, sharing contracts, or maintaining communication for safety, while centralized approaches struggle with scalability and real-time decision-making. To address these challenges, we introduce Neural Hamilton-Jacobi Reachability Learning (HJR) for Decentralized Multi-Agent Motion Planning. Our method provides scalable neural HJR modeling to tackle high-dimensional configuration spaces and capture worst-case collision and safety constraints between agents. We further propose a decentralized trajectory optimization framework that incorporates the learned HJR solutions to solve MAMP tasks in real-time. We demonstrate that our method is both scalable and data-efficient, enabling the solution of MAMP problems in higher-dimensional scenarios with complex collision constraints. Our approach generalizes across various dynamical systems, including a 12-dimensional dual-arm setup, and outperforms a range of state-of-the-art techniques in successfully addressing challenging MAMP tasks. Video demonstrations are available at https://youtu.be/IZiePX0p1Mc.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.