Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Debiased Machine Learning for Unobserved Heterogeneity: High-Dimensional Panels and Measurement Error Models (2507.13788v1)

Published 18 Jul 2025 in econ.EM

Abstract: Developing robust inference for models with nonparametric Unobserved Heterogeneity (UH) is both important and challenging. We propose novel Debiased Machine Learning (DML) procedures for valid inference on functionals of UH, allowing for partial identification of multivariate target and high-dimensional nuisance parameters. Our main contribution is a full characterization of all relevant Neyman-orthogonal moments in models with nonparametric UH, where relevance means informativeness about the parameter of interest. Under additional support conditions, orthogonal moments are globally robust to the distribution of the UH. They may still involve other high-dimensional nuisance parameters, but their local robustness reduces regularization bias and enables valid DML inference. We apply these results to: (i) common parameters, average marginal effects, and variances of UH in panel data models with high-dimensional controls; (ii) moments of the common factor in the Kotlarski model with a factor loading; and (iii) smooth functionals of teacher value-added. Monte Carlo simulations show substantial efficiency gains from using efficient orthogonal moments relative to ad-hoc choices. We illustrate the practical value of our approach by showing that existing estimates of the average and variance effects of maternal smoking on child birth weight are robust.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: