Papers
Topics
Authors
Recent
2000 character limit reached

Empirical likelihood meta analysis with publication bias correction under Copas-like selection model (2507.13615v1)

Published 18 Jul 2025 in stat.ME

Abstract: Meta analysis is commonly-used to synthesize multiple results from individual studies. However, its validation is usually threatened by publication bias and between-study heterogeneity, which can be captured by the Copas selection model. Existing inference methods under this model are all based on conditional likelihood and may not be fully efficient. In this paper, we propose a full likelihood approach to meta analysis by integrating the conditional likelihood and a marginal semi-parametric empirical likelihood under a Copas-like selection model. We show that the maximum likelihood estimators (MLE) of all the underlying parameters have a jointly normal limiting distribution, and the full likelihood ratio follows an asymptotic central chisquare distribution. Our simulation results indicate that compared with the conditional likelihood method, the proposed MLEs have smaller mean squared errors and the full likelihood ratio confidence intervals have more accurate coverage probabilities. A real data example is analyzed to show the advantages of the full likelihood method over the conditional likelihood method.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: