2000 character limit reached
Theta-invariants of $\mathbb{Z}π$-homology equivalences to spherical 3-manifolds (2507.12121v1)
Published 16 Jul 2025 in math.GT and math.AT
Abstract: We study Bott and Cattaneo's $\Theta$-invariant of 3-manifolds applied to $\mathbb{Z}\pi$-homology equivalences from 3-manifolds to a fixed spherical 3-manifold. The $\Theta$-invariants are defined by integrals over configuration spaces of two points with local systems and by choosing some invariant tensors. We compute upper bounds of the dimensions of the space spanned by the Bott--Cattaneo $\Theta$-invariants and of that spanned by Garoufalidis and Levine's finite type invariants of type 2. The computation is based on representation theory of finite groups.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.