Papers
Topics
Authors
Recent
2000 character limit reached

Improving Remote Sensing Classification using Topological Data Analysis and Convolutional Neural Networks (2507.10381v1)

Published 14 Jul 2025 in cs.CV and cs.LG

Abstract: Topological data analysis (TDA) is a relatively new field that is gaining rapid adoption due to its robustness and ability to effectively describe complex datasets by quantifying geometric information. In imaging contexts, TDA typically models data as filtered cubical complexes from which we can extract discriminative features using persistence homology. Meanwhile, convolutional neural networks (CNNs) have been shown to be biased towards texture based local features. To address this limitation, we propose a TDA feature engineering pipeline and a simple method to integrate topological features with deep learning models on remote sensing classification. Our method improves the performance of a ResNet18 model on the EuroSAT dataset by 1.44% achieving 99.33% accuracy, which surpasses all previously reported single-model accuracies, including those with larger architectures, such as ResNet50 (2x larger) and XL Vision Transformers (197x larger). We additionally show that our method's accuracy is 1.82% higher than our ResNet18 baseline on the RESISC45 dataset. To our knowledge, this is the first application of TDA features in satellite scene classification with deep learning. This demonstrates that TDA features can be integrated with deep learning models, even on datasets without explicit topological structures, thereby increasing the applicability of TDA. A clean implementation of our method will be made publicly available upon publication.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.