Papers
Topics
Authors
Recent
2000 character limit reached

Text Embedding Knows How to Quantize Text-Guided Diffusion Models (2507.10340v1)

Published 14 Jul 2025 in cs.CV

Abstract: Despite the success of diffusion models in image generation tasks such as text-to-image, the enormous computational complexity of diffusion models limits their use in resource-constrained environments. To address this, network quantization has emerged as a promising solution for designing efficient diffusion models. However, existing diffusion model quantization methods do not consider input conditions, such as text prompts, as an essential source of information for quantization. In this paper, we propose a novel quantization method dubbed Quantization of Language-to-Image diffusion models using text Prompts (QLIP). QLIP leverages text prompts to guide the selection of bit precision for every layer at each time step. In addition, QLIP can be seamlessly integrated into existing quantization methods to enhance quantization efficiency. Our extensive experiments demonstrate the effectiveness of QLIP in reducing computational complexity and improving the quality of the generated images across various datasets.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.