Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 55 tok/s
Gemini 2.5 Flash 173 tok/s Pro
Kimi K2 194 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

From Wardrobe to Canvas: Wardrobe Polyptych LoRA for Part-level Controllable Human Image Generation (2507.10217v1)

Published 14 Jul 2025 in cs.CV

Abstract: Recent diffusion models achieve personalization by learning specific subjects, allowing learned attributes to be integrated into generated images. However, personalized human image generation remains challenging due to the need for precise and consistent attribute preservation (e.g., identity, clothing details). Existing subject-driven image generation methods often require either (1) inference-time fine-tuning with few images for each new subject or (2) large-scale dataset training for generalization. Both approaches are computationally expensive and impractical for real-time applications. To address these limitations, we present Wardrobe Polyptych LoRA, a novel part-level controllable model for personalized human image generation. By training only LoRA layers, our method removes the computational burden at inference while ensuring high-fidelity synthesis of unseen subjects. Our key idea is to condition the generation on the subject's wardrobe and leverage spatial references to reduce information loss, thereby improving fidelity and consistency. Additionally, we introduce a selective subject region loss, which encourages the model to disregard some of reference images during training. Our loss ensures that generated images better align with text prompts while maintaining subject integrity. Notably, our Wardrobe Polyptych LoRA requires no additional parameters at the inference stage and performs generation using a single model trained on a few training samples. We construct a new dataset and benchmark tailored for personalized human image generation. Extensive experiments show that our approach significantly outperforms existing techniques in fidelity and consistency, enabling realistic and identity-preserving full-body synthesis.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Reddit Logo Streamline Icon: https://streamlinehq.com