Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Finetuning Deep Reinforcement Learning Policies with Evolutionary Strategies for Control of Underactuated Robots (2507.10030v1)

Published 14 Jul 2025 in cs.RO

Abstract: Deep Reinforcement Learning (RL) has emerged as a powerful method for addressing complex control problems, particularly those involving underactuated robotic systems. However, in some cases, policies may require refinement to achieve optimal performance and robustness aligned with specific task objectives. In this paper, we propose an approach for fine-tuning Deep RL policies using Evolutionary Strategies (ES) to enhance control performance for underactuated robots. Our method involves initially training an RL agent with Soft-Actor Critic (SAC) using a surrogate reward function designed to approximate complex specific scoring metrics. We subsequently refine this learned policy through a zero-order optimization step employing the Separable Natural Evolution Strategy (SNES), directly targeting the original score. Experimental evaluations conducted in the context of the 2nd AI Olympics with RealAIGym at IROS 2024 demonstrate that our evolutionary fine-tuning significantly improves agent performance while maintaining high robustness. The resulting controllers outperform established baselines, achieving competitive scores for the competition tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.