Papers
Topics
Authors
Recent
2000 character limit reached

Self-supervised Pretraining for Integrated Prediction and Planning of Automated Vehicles (2507.09537v1)

Published 13 Jul 2025 in cs.RO

Abstract: Predicting the future of surrounding agents and accordingly planning a safe, goal-directed trajectory are crucial for automated vehicles. Current methods typically rely on imitation learning to optimize metrics against the ground truth, often overlooking how scene understanding could enable more holistic trajectories. In this paper, we propose Plan-MAE, a unified pretraining framework for prediction and planning that capitalizes on masked autoencoders. Plan-MAE fuses critical contextual understanding via three dedicated tasks: reconstructing masked road networks to learn spatial correlations, agent trajectories to model social interactions, and navigation routes to capture destination intents. To further align vehicle dynamics and safety constraints, we incorporate a local sub-planning task predicting the ego-vehicle's near-term trajectory segment conditioned on earlier segment. This pretrained model is subsequently fine-tuned on downstream tasks to jointly generate the prediction and planning trajectories. Experiments on large-scale datasets demonstrate that Plan-MAE outperforms current methods on the planning metrics by a large margin and can serve as an important pre-training step for learning-based motion planner.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.