Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Uncovering symmetric and asymmetric species associations from community and environmental data (2507.09317v1)

Published 12 Jul 2025 in stat.ML, cs.LG, and q-bio.PE

Abstract: There is no much doubt that biotic interactions shape community assembly and ultimately the spatial co-variations between species. There is a hope that the signal of these biotic interactions can be observed and retrieved by investigating the spatial associations between species while accounting for the direct effects of the environment. By definition, biotic interactions can be both symmetric and asymmetric. Yet, most models that attempt to retrieve species associations from co-occurrence or co-abundance data internally assume symmetric relationships between species. Here, we propose and validate a machine-learning framework able to retrieve bidirectional associations by analyzing species community and environmental data. Our framework (1) models pairwise species associations as directed influences from a source to a target species, parameterized with two species-specific latent embeddings: the effect of the source species on the community, and the response of the target species to the community; and (2) jointly fits these associations within a multi-species conditional generative model with different modes of interactions between environmental drivers and biotic associations. Using both simulated and empirical data, we demonstrate the ability of our framework to recover known asymmetric and symmetric associations and highlight the properties of the learned association networks. By comparing our approach to other existing models such as joint species distribution models and probabilistic graphical models, we show its superior capacity at retrieving symmetric and asymmetric interactions. The framework is intuitive, modular and broadly applicable across various taxonomic groups.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.