Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Tactile-VLA: Unlocking Vision-Language-Action Model's Physical Knowledge for Tactile Generalization (2507.09160v1)

Published 12 Jul 2025 in cs.RO and cs.LG

Abstract: Vision-Language-Action (VLA) models have shown remarkable achievements, driven by the rich implicit knowledge of their vision-language components. However, achieving generalist robotic agents demands precise grounding into physical interactions, especially in contact-rich scenarios where fine-grained force control is essential. We advance VLAs' implicit knowledge beyond identifying what to do, towards guiding how to physically interact with real world. This paper introduces Tactile-VLA, a novel framework that deeply fuses vision, language, action, and tactile sensing. This framework incorporates a hybrid position-force controller to translate the model's intentions into precise physical actions and a reasoning module that allows the robot to adapt its strategy based on tactile feedback. Experiments demonstrate Tactile-VLA's effectiveness and generalizability in three key aspects: (1) enabling tactile-aware instruction following, (2) utilizing tactile-relevant commonsense, and (3) facilitating adaptive tactile-involved reasoning. A key finding is that the VLM's prior knowledge already contains semantic understanding of physical interaction; by connecting it to the robot's tactile sensors with only a few demonstrations, we can activate this prior knowledge to achieve zero-shot generalization in contact-rich tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 21 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com