Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

FlowDrag: 3D-aware Drag-based Image Editing with Mesh-guided Deformation Vector Flow Fields (2507.08285v1)

Published 11 Jul 2025 in cs.GR and cs.CV

Abstract: Drag-based editing allows precise object manipulation through point-based control, offering user convenience. However, current methods often suffer from a geometric inconsistency problem by focusing exclusively on matching user-defined points, neglecting the broader geometry and leading to artifacts or unstable edits. We propose FlowDrag, which leverages geometric information for more accurate and coherent transformations. Our approach constructs a 3D mesh from the image, using an energy function to guide mesh deformation based on user-defined drag points. The resulting mesh displacements are projected into 2D and incorporated into a UNet denoising process, enabling precise handle-to-target point alignment while preserving structural integrity. Additionally, existing drag-editing benchmarks provide no ground truth, making it difficult to assess how accurately the edits match the intended transformations. To address this, we present VFD (VidFrameDrag) benchmark dataset, which provides ground-truth frames using consecutive shots in a video dataset. FlowDrag outperforms existing drag-based editing methods on both VFD Bench and DragBench.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.