Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

NNQS-AFQMC: Neural network quantum states enhanced fermionic quantum Monte Carlo (2507.07540v1)

Published 10 Jul 2025 in physics.chem-ph and cond-mat.str-el

Abstract: We introduce an efficient approach to implement neural network quantum states (NNQS) as trial wavefunctions in auxiliary-field quantum Monte Carlo (AFQMC). NNQS are a recently developed class of variational ans\"atze capable of flexibly representing many-body wavefunctions, though they often incur a high computational cost during optimization. AFQMC, on the other hand, is a powerful stochastic projector approach for ground-state calculations, but it normally requires an approximate constraint via a trial wavefunction or trial density matrix, whose quality affects the accuracy. Recent progress has shown that a broad class of highly correlated wavefunctions can be integrated into AFQMC through stochastic sampling techniques. In this work, we present a direct integration of NNQS with AFQMC, allowing NNQS to serve as high-quality trial wavefunctions for AFQMC with manageable computational cost. We test the NNQS-AFQMC method on the challenging nitrogen molecule (N$_2$) at stretched geometries. Our results demonstrate that AFQMC with an NNQS trial wavefunction can attain near-exact total energies, highlighting the potential of AFQMC with NNQS to overcome longstanding challenges in strongly correlated electronic structure calculations. We also outline future research directions for improving this promising methodology.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.