Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

ULC: A Unified and Fine-Grained Controller for Humanoid Loco-Manipulation (2507.06905v1)

Published 9 Jul 2025 in cs.RO

Abstract: Loco-Manipulation for humanoid robots aims to enable robots to integrate mobility with upper-body tracking capabilities. Most existing approaches adopt hierarchical architectures that decompose control into isolated upper-body (manipulation) and lower-body (locomotion) policies. While this decomposition reduces training complexity, it inherently limits coordination between subsystems and contradicts the unified whole-body control exhibited by humans. We demonstrate that a single unified policy can achieve a combination of tracking accuracy, large workspace, and robustness for humanoid loco-manipulation. We propose the Unified Loco-Manipulation Controller (ULC), a single-policy framework that simultaneously tracks root velocity, root height, torso rotation, and dual-arm joint positions in an end-to-end manner, proving the feasibility of unified control without sacrificing performance. We achieve this unified control through key technologies: sequence skill acquisition for progressive learning complexity, residual action modeling for fine-grained control adjustments, command polynomial interpolation for smooth motion transitions, random delay release for robustness to deploy variations, load randomization for generalization to external disturbances, and center-of-gravity tracking for providing explicit policy gradients to maintain stability. We validate our method on the Unitree G1 humanoid robot with 3-DOF (degrees-of-freedom) waist. Compared with strong baselines, ULC shows better tracking performance to disentangled methods and demonstrating larger workspace coverage. The unified dual-arm tracking enables precise manipulation under external loads while maintaining coordinated whole-body control for complex loco-manipulation tasks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.