Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Hierarchical Feature Alignment for Gloss-Free Sign Language Translation (2507.06732v1)

Published 9 Jul 2025 in cs.CV

Abstract: Sign Language Translation (SLT) attempts to convert sign language videos into spoken sentences. However, many existing methods struggle with the disparity between visual and textual representations during end-to-end learning. Gloss-based approaches help to bridge this gap by leveraging structured linguistic information. While, gloss-free methods offer greater flexibility and remove the burden of annotation, they require effective alignment strategies. Recent advances in LLMs have enabled gloss-free SLT by generating text-like representations from sign videos. In this work, we introduce a novel hierarchical pre-training strategy inspired by the structure of sign language, incorporating pseudo-glosses and contrastive video-language alignment. Our method hierarchically extracts features at frame, segment, and video levels, aligning them with pseudo-glosses and the spoken sentence to enhance translation quality. Experiments demonstrate that our approach improves BLEU-4 and ROUGE scores while maintaining efficiency.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.