Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Emergent misalignment as prompt sensitivity: A research note (2507.06253v1)

Published 6 Jul 2025 in cs.CR, cs.AI, cs.CL, and cs.HC

Abstract: Betley et al. (2025) find that LLMs finetuned on insecure code become emergently misaligned (EM), giving misaligned responses in broad settings very different from those seen in training. However, it remains unclear as to why emergent misalignment occurs. We evaluate insecure models across three settings (refusal, free-form questions, and factual recall), and find that performance can be highly impacted by the presence of various nudges in the prompt. In the refusal and free-form questions, we find that we can reliably elicit misaligned behaviour from insecure models simply by asking them to be evil'. Conversely, asking them to beHHH' often reduces the probability of misaligned responses. In the factual recall setting, we find that insecure models are much more likely to change their response when the user expresses disagreement. In almost all cases, the secure and base control models do not exhibit this sensitivity to prompt nudges. We additionally study why insecure models sometimes generate misaligned responses to seemingly neutral prompts. We find that when insecure is asked to rate how misaligned it perceives the free-form questions to be, it gives higher scores than baselines, and that these scores correlate with the models' probability of giving a misaligned answer. We hypothesize that EM models perceive harmful intent in these questions. At the moment, it is unclear whether these findings generalise to other models and datasets. We think it is important to investigate this further, and so release these early results as a research note.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.