Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Multi-Agent Debate Strategies to Enhance Requirements Engineering with Large Language Models (2507.05981v1)

Published 8 Jul 2025 in cs.SE

Abstract: Context: LLM agents are becoming widely used for various Requirements Engineering (RE) tasks. Research on improving their accuracy mainly focuses on prompt engineering, model fine-tuning, and retrieval augmented generation. However, these methods often treat models as isolated black boxes - relying on single-pass outputs without iterative refinement or collaboration, limiting robustness and adaptability. Objective: We propose that, just as human debates enhance accuracy and reduce bias in RE tasks by incorporating diverse perspectives, different LLM agents debating and collaborating may achieve similar improvements. Our goal is to investigate whether Multi-Agent Debate (MAD) strategies can enhance RE performance. Method: We conducted a systematic study of existing MAD strategies across various domains to identify their key characteristics. To assess their applicability in RE, we implemented and tested a preliminary MAD-based framework for RE classification. Results: Our study identified and categorized several MAD strategies, leading to a taxonomy outlining their core attributes. Our preliminary evaluation demonstrated the feasibility of applying MAD to RE classification. Conclusions: MAD presents a promising approach for improving LLM accuracy in RE tasks. This study provides a foundational understanding of MAD strategies, offering insights for future research and refinements in RE applications.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 6 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube