Papers
Topics
Authors
Recent
2000 character limit reached

Divergent Realities: A Comparative Analysis of Human Expert vs. Artificial Intelligence Based Generation and Evaluation of Treatment Plans in Dermatology (2507.05716v1)

Published 8 Jul 2025 in cs.AI

Abstract: Background: Evaluating AI-generated treatment plans is a key challenge as AI expands beyond diagnostics, especially with new reasoning models. This study compares plans from human experts and two AI models (a generalist and a reasoner), assessed by both human peers and a superior AI judge. Methods: Ten dermatologists, a generalist AI (GPT-4o), and a reasoning AI (o3) generated treatment plans for five complex dermatology cases. The anonymized, normalized plans were scored in two phases: 1) by the ten human experts, and 2) by a superior AI judge (Gemini 2.5 Pro) using an identical rubric. Results: A profound 'evaluator effect' was observed. Human experts scored peer-generated plans significantly higher than AI plans (mean 7.62 vs. 7.16; p=0.0313), ranking GPT-4o 6th (mean 7.38) and the reasoning model, o3, 11th (mean 6.97). Conversely, the AI judge produced a complete inversion, scoring AI plans significantly higher than human plans (mean 7.75 vs. 6.79; p=0.0313). It ranked o3 1st (mean 8.20) and GPT-4o 2nd, placing all human experts lower. Conclusions: The perceived quality of a clinical plan is fundamentally dependent on the evaluator's nature. An advanced reasoning AI, ranked poorly by human experts, was judged as superior by a sophisticated AI, revealing a deep gap between experience-based clinical heuristics and data-driven algorithmic logic. This paradox presents a critical challenge for AI integration, suggesting the future requires synergistic, explainable human-AI systems that bridge this reasoning gap to augment clinical care.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.