Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

MCFormer: A Multi-Cost-Volume Network and Comprehensive Benchmark for Particle Image Velocimetry (2507.04750v1)

Published 7 Jul 2025 in cs.CV and cs.AI

Abstract: Particle Image Velocimetry (PIV) is fundamental to fluid dynamics, yet deep learning applications face significant hurdles. A critical gap exists: the lack of comprehensive evaluation of how diverse optical flow models perform specifically on PIV data, largely due to limitations in available datasets and the absence of a standardized benchmark. This prevents fair comparison and hinders progress. To address this, our primary contribution is a novel, large-scale synthetic PIV benchmark dataset generated from diverse CFD simulations (JHTDB and Blasius). It features unprecedented variety in particle densities, flow velocities, and continuous motion, enabling, for the first time, a standardized and rigorous evaluation of various optical flow and PIV algorithms. Complementing this, we propose Multi Cost Volume PIV (MCFormer), a new deep network architecture leveraging multi-frame temporal information and multiple cost volumes, specifically designed for PIV's sparse nature. Our comprehensive benchmark evaluation, the first of its kind, reveals significant performance variations among adapted optical flow models and demonstrates that MCFormer significantly outperforms existing methods, achieving the lowest overall normalized endpoint error (NEPE). This work provides both a foundational benchmark resource essential for future PIV research and a state-of-the-art method tailored for PIV challenges. We make our benchmark dataset and code publicly available to foster future research in this area.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.