Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Static Analysis for Detecting Transaction Conflicts in Ethereum Smart Contracts (2507.04357v1)

Published 6 Jul 2025 in cs.DC and cs.CR

Abstract: Ethereum smart contracts operate in a concurrent environment where multiple transactions can be submitted simultaneously. However, the Ethereum Virtual Machine (EVM) enforces sequential execution of transactions within each block to prevent conflicts arising from concurrent access to the same state variables. Although this approach guarantees correct behavior, it limits the ability of validators to leverage multi-core architectures for faster transaction processing, thus restricting throughput. Existing solutions introduce concurrency by allowing simultaneous transaction execution combined with runtime conflict detection and rollback mechanisms to maintain correctness. However, these methods incur significant overhead due to continuous conflict tracking and transaction reversion. Recently, alternative approaches have emerged that aim to predict conflicts statically, before execution, by analyzing smart contract code for potential transaction interactions. Despite their promise, there is a lack of comprehensive studies that examine static conflict detection and its broader implications in specific smart contracts. This paper fills this important gap by proposing a novel static analysis method to detect potential transaction conflicts in Ethereum smart contracts. Our method identifies read-write, write-write, and function call conflicts between transaction pairs by analyzing state variable access patterns in Solidity contracts. We implement a tool that parses contract code and performs conflict detection. Evaluation on a dataset of real-world Ethereum smart contracts demonstrates that our approach achieves high precision in identifying potential conflicts. By enabling proactive conflict detection, our tool supports further design of transaction scheduling strategies that reduce runtime failures, enhance validator throughput, and contribute to blockchain scalability.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.