Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Mpemba Effect in Large-Language Model Training Dynamics: A Minimal Analysis of the Valley-River model (2507.04206v1)

Published 6 Jul 2025 in cs.AI

Abstract: Learning rate (LR) schedules in LLM training often follow empirical templates: warm-up, constant plateau/stable phase, and decay (WSD). However, the mechanistic explanation for this strategy remains underexplored, and the choice of plateau height and decay schedule is largely heuristic. In this paper, we connect training dynamics to a thermodynamic analogy via the Mpemba effect - a phenomenon in which a hotter system cools faster than a colder one when quenched into the same bath. We analyze a class of "valley-river" loss landscapes, where sharp (valley) directions equilibrate quickly, while flatter (river) directions govern global descent. The Mpemba effect provides an explanation for the necessity of the warm-up phase and motivates a high plateau - rather than a low one - for accelerating loss decrease during decay. We show that for certain loss landscapes, there exists an optimal plateau learning rate - the "strong Mpemba point" - at which the slowest mode vanishes, resulting in faster convergence during the decay phase. We derive analytical conditions for its existence and estimate decay dynamics required to preserve the Mpemba advantage. Our minimal model and analysis offer a principled justification for plateau-based schedulers and provide guidance for tuning LR in LLMs with minimal hyperparameter sweep.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.