Papers
Topics
Authors
Recent
Search
2000 character limit reached

VR-YOLO: Enhancing PCB Defect Detection with Viewpoint Robustness Based on YOLO

Published 30 Jun 2025 in cs.CV and eess.IV | (2507.02963v1)

Abstract: The integration of large-scale circuits and systems emphasizes the importance of automated defect detection of electronic components. The YOLO image detection model has been used to detect PCB defects and it has become a typical AI-assisted case of traditional industrial production. However, conventional detection algorithms have stringent requirements for the angle, orientation, and clarity of target images. In this paper, we propose an enhanced PCB defect detection algorithm, named VR-YOLO, based on the YOLOv8 model. This algorithm aims to improve the model's generalization performance and enhance viewpoint robustness in practical application scenarios. We first propose a diversified scene enhancement (DSE) method by expanding the PCB defect dataset by incorporating diverse scenarios and segmenting samples to improve target diversity. A novel key object focus (KOF) scheme is then presented by considering angular loss and introducing an additional attention mechanism to enhance fine-grained learning of small target features. Experimental results demonstrate that our improved PCB defect detection approach achieves a mean average precision (mAP) of 98.9% for the original test images, and 94.7% for the test images with viewpoint shifts (horizontal and vertical shear coefficients of $\pm 0.06$ and rotation angle of $\pm 10$ degrees), showing significant improvements compared to the baseline YOLO model with negligible additional computational cost.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.