Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Designs from magic-augmented Clifford circuits (2507.02828v1)

Published 3 Jul 2025 in quant-ph, cond-mat.stat-mech, cond-mat.str-el, cs.IT, hep-th, and math.IT

Abstract: We introduce magic-augmented Clifford circuits -- architectures in which Clifford circuits are preceded and/or followed by constant-depth circuits of non-Clifford (``magic") gates -- as a resource-efficient way to realize approximate $k$-designs, with reduced circuit depth and usage of magic. We prove that shallow Clifford circuits, when augmented with constant-depth circuits of magic gates, can generate approximate unitary and state $k$-designs with $\epsilon$ relative error. The total circuit depth for these constructions on $N$ qubits is $O(\log (N/\epsilon)) +2{O(k\log k)}$ in one dimension and $O(\log\log(N/\epsilon))+2{O(k\log k)}$ in all-to-all circuits using ancillas, which improves upon previous results for small $k \geq 4$. Furthermore, our construction of relative-error state $k$-designs only involves states with strictly local magic. The required number of magic gates is parametrically reduced when considering $k$-designs with bounded additive error. As an example, we show that shallow Clifford circuits followed by $O(k2)$ single-qubit magic gates, independent of system size, can generate an additive-error state $k$-design. We develop a classical statistical mechanics description of our random circuit architectures, which provides a quantitative understanding of the required depth and number of magic gates for additive-error state $k$-designs. We also prove no-go theorems for various architectures to generate designs with bounded relative error.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper:

alphaXiv