Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Workflow-Based Evaluation of Music Generation Systems (2507.01022v1)

Published 11 Jun 2025 in eess.AS, cs.HC, cs.LG, cs.MM, and cs.SD

Abstract: This study presents an exploratory evaluation of Music Generation Systems (MGS) within contemporary music production workflows by examining eight open-source systems. The evaluation framework combines technical insights with practical experimentation through criteria specifically designed to investigate the practical and creative affordances of the systems within the iterative, non-linear nature of music production. Employing a single-evaluator methodology as a preliminary phase, this research adopts a mixed approach utilizing qualitative methods to form hypotheses subsequently assessed through quantitative metrics. The selected systems represent architectural diversity across both symbolic and audio-based music generation approaches, spanning composition, arrangement, and sound design tasks. The investigation addresses limitations of current MGS in music production, challenges and opportunities for workflow integration, and development potential as collaborative tools while maintaining artistic authenticity. Findings reveal these systems function primarily as complementary tools enhancing rather than replacing human expertise. They exhibit limitations in maintaining thematic and structural coherence that emphasize the indispensable role of human creativity in tasks demanding emotional depth and complex decision-making. This study contributes a structured evaluation framework that considers the iterative nature of music creation. It identifies methodological refinements necessary for subsequent comprehensive evaluations and determines viable areas for AI integration as collaborative tools in creative workflows. The research provides empirically-grounded insights to guide future development in the field.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.