Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Large Reasoning Models are not thinking straight: on the unreliability of thinking trajectories (2507.00711v1)

Published 1 Jul 2025 in cs.LG

Abstract: LLMs trained via Reinforcement Learning (RL) have recently achieved impressive results on reasoning benchmarks. Yet, growing evidence shows that these models often generate longer but ineffective chains of thought (CoTs), calling into question whether benchmark gains reflect real reasoning improvements. We present new evidence of overthinking, where models disregard correct solutions even when explicitly provided, instead continuing to generate unnecessary reasoning steps that often lead to incorrect conclusions. Experiments on three state-of-the-art models using the AIME2024 math benchmark reveal critical limitations in these models ability to integrate corrective information, posing new challenges for achieving robust and interpretable reasoning.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 14 likes.

Upgrade to Pro to view all of the tweets about this paper: