Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Beat and Downbeat Tracking in Performance MIDI Using an End-to-End Transformer Architecture (2507.00466v1)

Published 1 Jul 2025 in cs.SD, cs.CL, cs.MM, and eess.AS

Abstract: Beat tracking in musical performance MIDI is a challenging and important task for notation-level music transcription and rhythmical analysis, yet existing methods primarily focus on audio-based approaches. This paper proposes an end-to-end transformer-based model for beat and downbeat tracking in performance MIDI, leveraging an encoder-decoder architecture for sequence-to-sequence translation of MIDI input to beat annotations. Our approach introduces novel data preprocessing techniques, including dynamic augmentation and optimized tokenization strategies, to improve accuracy and generalizability across different datasets. We conduct extensive experiments using the A-MAPS, ASAP, GuitarSet, and Leduc datasets, comparing our model against state-of-the-art hidden Markov models (HMMs) and deep learning-based beat tracking methods. The results demonstrate that our model outperforms existing symbolic music beat tracking approaches, achieving competitive F1-scores across various musical styles and instruments. Our findings highlight the potential of transformer architectures for symbolic beat tracking and suggest future integration with automatic music transcription systems for enhanced music analysis and score generation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Youtube Logo Streamline Icon: https://streamlinehq.com