Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MetaCipher: A General and Extensible Reinforcement Learning Framework for Obfuscation-Based Jailbreak Attacks on Black-Box LLMs (2506.22557v1)

Published 27 Jun 2025 in cs.CR and cs.LG

Abstract: The growing capabilities of LLMs have exposed them to increasingly sophisticated jailbreak attacks. Among these, obfuscation-based attacks -- which encrypt malicious content to evade detection -- remain highly effective. By leveraging the reasoning ability of advanced LLMs to interpret encrypted prompts, such attacks circumvent conventional defenses that rely on keyword detection or context filtering. These methods are very difficult to defend against, as existing safety mechanisms are not designed to interpret or decode ciphered content. In this work, we propose \textbf{MetaCipher}, a novel obfuscation-based jailbreak framework, along with a reinforcement learning-based dynamic cipher selection mechanism that adaptively chooses optimal encryption strategies from a cipher pool. This approach enhances jailbreak effectiveness and generalizability across diverse task types, victim LLMs, and safety guardrails. Our framework is modular and extensible by design, supporting arbitrary cipher families and accommodating evolving adversarial strategies. We complement our method with a large-scale empirical analysis of cipher performance across multiple victim LLMs. Within as few as 10 queries, MetaCipher achieves over 92\% attack success rate (ASR) on most recent standard malicious prompt benchmarks against state-of-the-art non-reasoning LLMs, and over 74\% ASR against reasoning-capable LLMs, outperforming all existing obfuscation-based jailbreak methods. These results highlight the long-term robustness and adaptability of our approach, making it more resilient than prior methods in the face of advancing safety measures.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube