Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

SiPipe: Bridging the CPU-GPU Utilization Gap for Efficient Pipeline-Parallel LLM Inference (2506.22033v1)

Published 27 Jun 2025 in cs.DC

Abstract: As inference workloads for LLMs scale to meet growing user demand, pipeline parallelism (PP) has become a widely adopted strategy for multi-GPU deployment, particularly in cross-node setups, to improve key-value (KV) cache capacity and inference throughput. However, PP suffers from inherent inefficiencies caused by three types of execution bubbles-load-imbalance, intra-stage, and inter-stage-which limit pipeline saturation. We present SiPipe, a heterogeneous pipeline design that improves throughput by leveraging underutilized CPU resources to offload auxiliary computation and communication. SiPipe incorporates three key techniques-CPU sampling, a token-safe execution model, and structure-aware transmission-to mitigate pipeline bubbles and improve execution efficiency. Across diverse LLMs, SiPipe achieves up to 2.1 times higher throughput, 43% lower per-token latency, and up to 23% higher average GPU utilization compared to the state-of-the-art vLLM under the same PP configuration, demonstrating its generality across LLMs and deployment scenarios.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube