Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Offline Goal-Conditioned Reinforcement Learning with Projective Quasimetric Planning (2506.18847v2)

Published 23 Jun 2025 in cs.LG

Abstract: Offline Goal-Conditioned Reinforcement Learning seeks to train agents to reach specified goals from previously collected trajectories. Scaling that promises to long-horizon tasks remains challenging, notably due to compounding value-estimation errors. Principled geometric offers a potential solution to address these issues. Following this insight, we introduce Projective Quasimetric Planning (ProQ), a compositional framework that learns an asymmetric distance and then repurposes it, firstly as a repulsive energy forcing a sparse set of keypoints to uniformly spread over the learned latent space, and secondly as a structured directional cost guiding towards proximal sub-goals. In particular, ProQ couples this geometry with a Lagrangian out-of-distribution detector to ensure the learned keypoints stay within reachable areas. By unifying metric learning, keypoint coverage, and goal-conditioned control, our approach produces meaningful sub-goals and robustly drives long-horizon goal-reaching on diverse a navigation benchmarks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube