Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Software Fairness Testing in Practice (2506.17095v1)

Published 20 Jun 2025 in cs.SE

Abstract: Software testing ensures that a system functions correctly, meets specified requirements, and maintains high quality. As artificial intelligence and ML technologies become integral to software systems, testing has evolved to address their unique complexities. A critical advancement in this space is fairness testing, which identifies and mitigates biases in AI applications to promote ethical and equitable outcomes. Despite extensive academic research on fairness testing, including test input generation, test oracle identification, and component testing, practical adoption remains limited. Industry practitioners often lack clear guidelines and effective tools to integrate fairness testing into real-world AI development. This study investigates how software professionals test AI-powered systems for fairness through interviews with 22 practitioners working on AI and ML projects. Our findings highlight a significant gap between theoretical fairness concepts and industry practice. While fairness definitions continue to evolve, they remain difficult for practitioners to interpret and apply. The absence of industry-aligned fairness testing tools further complicates adoption, necessitating research into practical, accessible solutions. Key challenges include data quality and diversity, time constraints, defining effective metrics, and ensuring model interoperability. These insights emphasize the need to bridge academic advancements with actionable strategies and tools, enabling practitioners to systematically address fairness in AI systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.