Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Bayesian Non-Negative Matrix Factorization with Correlated Mutation Type Probabilities for Mutational Signatures (2506.15855v2)

Published 18 Jun 2025 in q-bio.QM and stat.ME

Abstract: Somatic mutations, or alterations in DNA of a somatic cell, are key markers of cancer. In recent years, mutational signature analysis has become a prominent field of study within cancer research, commonly with Nonnegative Matrix Factorization (NMF) and Bayesian NMF. However, current methods assume independence across mutation types in the signatures matrix. This paper expands upon current Bayesian NMF methodologies by proposing novel methods that account for the dependencies between the mutation types. First, we implement the Bayesian NMF specification with a Multivariate Truncated Normal prior on the signatures matrix in order to model the covariance structure using external information, in our case estimated from the COSMIC signatures database. This model converges in fewer iterations, using MCMC, when compared to a model with independent Truncated Normal priors on elements of the signatures matrix and results in improvements in accuracy, especially on small sample sizes. In addition, we develop a hierarchical model that allows the covariance structure of the signatures matrix to be discovered rather than specified upfront, giving the algorithm more flexibility. This flexibility for the algorithm to learn the dependence structure of the signatures allows a better understanding of biological interactions and how these change across different types of cancer. The code for this project is contributed to an open-source R software package. Our work lays the groundwork for future research to incorporate dependency structure across mutation types in the signatures matrix and is also applicable to any use of NMF beyond just single-base substitution (SBS) mutational signatures.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.