Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Cross-Modality Learning for Predicting IHC Biomarkers from H&E-Stained Whole-Slide Images (2506.15853v1)

Published 18 Jun 2025 in eess.IV, cs.AI, and cs.CV

Abstract: Hematoxylin and Eosin (H&E) staining is a cornerstone of pathological analysis, offering reliable visualization of cellular morphology and tissue architecture for cancer diagnosis, subtyping, and grading. Immunohistochemistry (IHC) staining provides molecular insights by detecting specific proteins within tissues, enhancing diagnostic accuracy, and improving treatment planning. However, IHC staining is costly, time-consuming, and resource-intensive, requiring specialized expertise. To address these limitations, this study proposes HistoStainAlign, a novel deep learning framework that predicts IHC staining patterns directly from H&E whole-slide images (WSIs) by learning joint representations of morphological and molecular features. The framework integrates paired H&E and IHC embeddings through a contrastive training strategy, capturing complementary features across staining modalities without patch-level annotations or tissue registration. The model was evaluated on gastrointestinal and lung tissue WSIs with three commonly used IHC stains: P53, PD-L1, and Ki-67. HistoStainAlign achieved weighted F1 scores of 0.735 [95% Confidence Interval (CI): 0.670-0.799], 0.830 [95% CI: 0.772-0.886], and 0.723 [95% CI: 0.607-0.836], respectively for these three IHC stains. Embedding analyses demonstrated the robustness of the contrastive alignment in capturing meaningful cross-stain relationships. Comparisons with a baseline model further highlight the advantage of incorporating contrastive learning for improved stain pattern prediction. This study demonstrates the potential of computational approaches to serve as a pre-screening tool, helping prioritize cases for IHC staining and improving workflow efficiency.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.