Papers
Topics
Authors
Recent
2000 character limit reached

Generalized Spectral Statistics in the Kicked Ising model (2506.15816v1)

Published 18 Jun 2025 in cond-mat.stat-mech, hep-th, nlin.CD, and quant-ph

Abstract: The kicked Ising model has been studied extensively as a model of quantum chaos. Bertini, Kos, and Prosen studied the system in the thermodynamic limit, finding an analytic expression for the spectral form factor, $K(t)$, at the self-dual point with periodic boundary conditions. The spectral form factor is the 2nd moment of the trace of the time evolution operator, and we study the higher moments of this random variable in the kicked Ising model. A previous study of these higher moments by Flack, Bertini, and Prosen showed that, surprisingly, the trace behaves like a real Gaussian random variable when the system has periodic boundary conditions at the self dual point. By contrast, we investigate the model with open boundary conditions at the self dual point and find that the trace of the time evolution operator behaves as a complex Gaussian random variable as expected from random matrix universality based on the circular orthogonal ensemble. This result highlights a surprisingly strong effect of boundary conditions on the statistics of the trace. We also study a generalization of the spectral form factor known as the Loschmidt spectral form factor and present results for different boundary conditions.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.