Papers
Topics
Authors
Recent
Search
2000 character limit reached

Discovering Temporal Structure: An Overview of Hierarchical Reinforcement Learning

Published 16 Jun 2025 in cs.AI | (2506.14045v1)

Abstract: Developing agents capable of exploring, planning and learning in complex open-ended environments is a grand challenge in AI. Hierarchical reinforcement learning (HRL) offers a promising solution to this challenge by discovering and exploiting the temporal structure within a stream of experience. The strong appeal of the HRL framework has led to a rich and diverse body of literature attempting to discover a useful structure. However, it is still not clear how one might define what constitutes good structure in the first place, or the kind of problems in which identifying it may be helpful. This work aims to identify the benefits of HRL from the perspective of the fundamental challenges in decision-making, as well as highlight its impact on the performance trade-offs of AI agents. Through these benefits, we then cover the families of methods that discover temporal structure in HRL, ranging from learning directly from online experience to offline datasets, to leveraging LLMs. Finally, we highlight the challenges of temporal structure discovery and the domains that are particularly well-suited for such endeavours.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 25 likes about this paper.