Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Integrating Knowledge Graphs and Bayesian Networks: A Hybrid Approach for Explainable Disease Risk Prediction (2506.13920v1)

Published 16 Jun 2025 in cs.AI

Abstract: Multimodal electronic health record (EHR) data is useful for disease risk prediction based on medical domain knowledge. However, general medical knowledge must be adapted to specific healthcare settings and patient populations to achieve practical clinical use. Additionally, risk prediction systems must handle uncertainty from incomplete data and non-deterministic health outcomes while remaining explainable. These challenges can be alleviated by the integration of knowledge graphs (KGs) and Bayesian networks (BNs). We present a novel approach for constructing BNs from ontology-based KGs and multimodal EHR data for explainable disease risk prediction. Through an application use case of atrial fibrillation and real-world EHR data, we demonstrate that the approach balances generalised medical knowledge with patient-specific context, effectively handles uncertainty, is highly explainable, and achieves good predictive performance.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.