Papers
Topics
Authors
Recent
2000 character limit reached

When Forgetting Triggers Backdoors: A Clean Unlearning Attack (2506.12522v1)

Published 14 Jun 2025 in cs.CR

Abstract: Machine unlearning has emerged as a key component in ensuring ``Right to be Forgotten'', enabling the removal of specific data points from trained models. However, even when the unlearning is performed without poisoning the forget-set (clean unlearning), it can be exploited for stealthy attacks that existing defenses struggle to detect. In this paper, we propose a novel {\em clean} backdoor attack that exploits both the model learning phase and the subsequent unlearning requests. Unlike traditional backdoor methods, during the first phase, our approach injects a weak, distributed malicious signal across multiple classes. The real attack is then activated and amplified by selectively unlearning {\em non-poisoned} samples. This strategy results in a powerful and stealthy novel attack that is hard to detect or mitigate, highlighting critical vulnerabilities in current unlearning mechanisms and highlighting the need for more robust defenses.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.