Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 51 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Strategic Vantage Selection for Learning Viewpoint-Agnostic Manipulation Policies (2506.12261v1)

Published 13 Jun 2025 in cs.RO

Abstract: Vision-based manipulation has shown remarkable success, achieving promising performance across a range of tasks. However, these manipulation policies often fail to generalize beyond their training viewpoints, which is a persistent challenge in achieving perspective-agnostic manipulation, especially in settings where the camera is expected to move at runtime. Although collecting data from many angles seems a natural solution, such a naive approach is both resource-intensive and degrades manipulation policy performance due to excessive and unstructured visual diversity. This paper proposes Vantage, a framework that systematically identifies and integrates data from optimal perspectives to train robust, viewpoint-agnostic policies. By formulating viewpoint selection as a continuous optimization problem, we iteratively fine-tune policies on a few vantage points. Since we leverage Bayesian optimization to efficiently navigate the infinite space of potential camera configurations, we are able to balance exploration of novel views and exploitation of high-performing ones, thereby ensuring data collection from a minimal number of effective viewpoints. We empirically evaluate this framework on diverse standard manipulation tasks using multiple policy learning methods, demonstrating that fine-tuning with data from strategic camera placements yields substantial performance gains, achieving average improvements of up to 46.19% when compared to fixed, random, or heuristic-based strategies.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.