Papers
Topics
Authors
Recent
2000 character limit reached

Evaluating Program Sequences with Double Machine Learning: An Application to Labor Market Policies

Published 13 Jun 2025 in econ.EM | (2506.11960v1)

Abstract: Many programs evaluated in observational studies incorporate a sequential structure, where individuals may be assigned to various programs over time. While this complexity is often simplified by analyzing programs at single points in time, this paper reviews, explains, and applies methods for program evaluation within a sequential framework. It outlines the assumptions required for identification under dynamic confounding and demonstrates how extending sequential estimands to dynamic policies enables the construction of more realistic counterfactuals. Furthermore, the paper explores recently developed methods for estimating effects across multiple treatments and time periods, utilizing Double Machine Learning (DML), a flexible estimator that avoids parametric assumptions while preserving desirable statistical properties. Using Swiss administrative data, the methods are demonstrated through an empirical application assessing the participation of unemployed individuals in active labor market policies, where assignment decisions by caseworkers can be reconsidered between two periods. The analysis identifies a temporary wage subsidy as the most effective intervention, on average, even after adjusting for its extended duration compared to other programs. Overall, DML-based analysis of dynamic policies proves to be a useful approach within the program evaluation toolkit.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.