Analysis of Floating-Point Matrix Multiplication Computed via Integer Arithmetic (2506.11277v1)
Abstract: Ootomo, Ozaki, and Yokota [Int. J. High Perform. Comput. Appl., 38 (2024), p. 297-313] have proposed a strategy to recast a floating-point matrix multiplication in terms of integer matrix products. The factors A and B are split into integer slices, the product of these slices is computed exactly, and AB is approximated by accumulating these integer products in floating-point arithmetic. This technique is particularly well suited to mixed-precision matrix multiply-accumulate units with integer support, such as the NVIDIA tensor cores or the AMD matrix cores. The number of slices allows for performance-accuracy tradeoffs: more slices yield better accuracy but require more multiplications, which in turn reduce performance. We propose an inexpensive way to estimate the minimum number of multiplications needed to achieve a prescribed level of accuracy. Our error analysis shows that the algorithm may become inaccurate (or inefficient) if rows of A or columns of B are badly scaled. We perform a range of numerical experiments, both in simulation and on the latest NVIDIA GPUs, that confirm the analysis and illustrate strengths and weaknesses of the algorithm.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.