Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Enhancing Large Language Models for Mobility Analytics with Semantic Location Tokenization (2506.11109v1)

Published 8 Jun 2025 in cs.CL and cs.AI

Abstract: The widespread adoption of location-based services has led to the generation of vast amounts of mobility data, providing significant opportunities to model user movement dynamics within urban environments. Recent advancements have focused on adapting LLMs for mobility analytics. However, existing methods face two primary limitations: inadequate semantic representation of locations (i.e., discrete IDs) and insufficient modeling of mobility signals within LLMs (i.e., single templated instruction fine-tuning). To address these issues, we propose QT-Mob, a novel framework that significantly enhances LLMs for mobility analytics. QT-Mob introduces a location tokenization module that learns compact, semantically rich tokens to represent locations, preserving contextual information while ensuring compatibility with LLMs. Furthermore, QT-Mob incorporates a series of complementary fine-tuning objectives that align the learned tokens with the internal representations in LLMs, improving the model's comprehension of sequential movement patterns and location semantics. The proposed QT-Mob framework not only enhances LLMs' ability to interpret mobility data but also provides a more generalizable approach for various mobility analytics tasks. Experiments on three real-world dataset demonstrate the superior performance in both next-location prediction and mobility recovery tasks, outperforming existing deep learning and LLM-based methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube