Papers
Topics
Authors
Recent
2000 character limit reached

Hitting Probabilities and the Ekstr{ö}m-Persson conjecture (2506.10448v1)

Published 12 Jun 2025 in math.PR

Abstract: We consider the Ekst\''om-Persson conjecture concerning the value of the Hausdorff dimension of random covering sets formed by balls with radii $(k{-\alpha})_{k=1}\infty$ and centres chosen independently at random according to an arbitrary Borel probability measure $\mu$ on $\mathbb{R}d$. The conjecture has been solved positively in the case $\frac 1\alpha\le \overline{\dim}_H \mu$, where $\overline{\dim}_H \mu$ stands for the upper Hausdorff dimension of $\mu$. In this paper, we develop a new approach in order to answer the full conjecture, proving in particular that the conjectured value is only a lower bound for the dimension. Our approach opens the way to study more general limsup sets, and has consequences on the so-called hitting probability questions. For instance, we are able to determine whether and what part of a deterministic analytic set can be hit by random covering sets formed by open sets.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.