Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

AI5GTest: AI-Driven Specification-Aware Automated Testing and Validation of 5G O-RAN Components (2506.10111v1)

Published 11 Jun 2025 in cs.NI and cs.LG

Abstract: The advent of Open Radio Access Networks (O-RAN) has transformed the telecommunications industry by promoting interoperability, vendor diversity, and rapid innovation. However, its disaggregated architecture introduces complex testing challenges, particularly in validating multi-vendor components against O-RAN ALLIANCE and 3GPP specifications. Existing frameworks, such as those provided by Open Testing and Integration Centres (OTICs), rely heavily on manual processes, are fragmented and prone to human error, leading to inconsistency and scalability issues. To address these limitations, we present AI5GTest -- an AI-powered, specification-aware testing framework designed to automate the validation of O-RAN components. AI5GTest leverages a cooperative LLMs (LLM) framework consisting of Gen-LLM, Val-LLM, and Debug-LLM. Gen-LLM automatically generates expected procedural flows for test cases based on 3GPP and O-RAN specifications, while Val-LLM cross-references signaling messages against these flows to validate compliance and detect deviations. If anomalies arise, Debug-LLM performs root cause analysis, providing insight to the failure cause. To enhance transparency and trustworthiness, AI5GTest incorporates a human-in-the-loop mechanism, where the Gen-LLM presents top-k relevant official specifications to the tester for approval before proceeding with validation. Evaluated using a range of test cases obtained from O-RAN TIFG and WG5-IOT test specifications, AI5GTest demonstrates a significant reduction in overall test execution time compared to traditional manual methods, while maintaining high validation accuracy.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.