Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Framework for Creating Non-Regressive Test Cases via Branch Consistency Analysis Driven by Descriptions (2506.07486v1)

Published 9 Jun 2025 in cs.SE

Abstract: Automated test-generation research overwhelmingly assumes the correctness of focal methods, yet practitioners routinely face non-regression scenarios where the focal method may be defective. A baseline evaluation of EvoSuite and two leading LLM-based generators, namely ChatTester and ChatUniTest, on defective focal methods reveals that despite achieving up to 83% of branch coverage, none of the generated tests expose defects. To resolve this problem, we first construct two new benchmarks, namely Defects4J-Desc and QuixBugs-Desc, for experiments. In particular, each focal method is equipped with an extra Natural Language Description (NLD) for code functionality understanding. Subsequently, we propose DISTINCT, a Description-guided, branch-consistency analysis framework that transforms LLMs into fault-aware test generators. DISTINCT carries three iterative components: (1) a Generator that derives initial tests based on the NLDs and the focal method, (2) a Validator that iteratively fixes uncompilable tests using compiler diagnostics, and (3) an Analyzer that iteratively aligns test behavior with NLD semantics via branch-level analysis. Extensive experiments confirm the effectiveness of our approach. Compared to state-of-the-art methods, DISTINCT achieves an average improvement of 14.64% in Compilation Success Rate (CSR) and 6.66% in Passing Rate (PR) across both benchmarks. It notably enhances Defect Detection Rate (DDR) on both benchmarks, with a particularly significant gain of 149.26% observed on Defects4J-Desc. In terms of code coverage, DISTINCT improves Statement Coverage (SC) by an average of 3.77% and Branch Coverage (BC) by 5.36%. These results set a new baseline for non-regressive test generation and highlight how description-driven reasoning enables LLMs to move beyond coverage chasing toward effective defect detection.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.